Laut einer Studie von Gartner planen 66 Prozent der befragten Unternehmen, bis 2020 5G eingeführt zu haben. Und 59 Prozent wollen mit dem Einsatz des neuen Netzes auch Use Cases im Bereich Internet der Dinge angehen. Gastautor Karsten Stöhr von DataStax erklärt, wie der 5G-Standard endlich den Weg frei macht, von den Daten zu profitieren, die neue Technologien generieren.
(Quelle: Shutterstock)
Smartphones, Smart Cities, Smart Homes und Smart Cars werden unsere digitale Welt neu bestimmen und zugleich eine massive Infrastruktur aus sensorischen Daten schaffen. Diese Masse an Daten wird mit dem Einsatz neuer Technologien weiter steigen – auf 175 Zettabytes in fünf Jahren, wie es IDC voraussagt. Jedoch machen wir auch unentwegt Fortschritte, was die Nutzung dieser Daten angeht. So stehen uns, nicht zuletzt dank 5G, schon heute Mittel dazu zur Verfügung, die noch vor fünf Jahren unvorstellbar gewesen wären. Vier solcher Schlüsseltechnologien, die ein leistungsfähiges Management von Daten in skalierbarer Form für IoT-Projekte ermöglichen, werden nachfolgend beleuchtet
IoT-Projekte: Zeitreihen-Datenbanken
Zeitreihendaten machen in IoT-Projekten einen großen Teil der anfallenden Daten aus. Betrachtet man Produktionsergebnisse im Laufe der Zeit, lassen sich Aussagen über den Einfluss bestimmter Parameter treffen, Trends bewerten oder Muster in den Daten identifizieren. So könnten beispielsweise Temperaturschwankungen eines Brennofens die Qualität des Endprodukts beeinflussen. Die Einsichten entstehen hier aus der Analyse von Zeitreihendaten, also dem Abgleich von Werten über eine bestimmte Zeit hinweg. Datenbanken für das Management solcher Daten müssen meist eine große Menge an Schreibvorgängen unterstützen. Auch wenn die einzelnen Datensätze klein sein mögen, ergibt sich die Herausforderung durch die hohe Anzahl an Datensätzen, die über einen Zeitraum anfällt.
Der Ansatz, Zeitreihendaten zu verwalten, unterscheidet sich daher stark vom bekannteren relationalen Datenmodellierungsansatz. In einem Zeitreihen-Datenmodell speichert der Anwender Daten in Spalten und nicht in einem traditionellen zeilenbasierten Modell. Dies ermöglicht es der Datenbank, Daten effizient auf den Speicher zu schreiben und für Analysezwecke zu lesen. Zudem wird die Zeit bis zur Rückgabe einer Anfrage verkürzt. Weitere Vorteile von Zeitreihen-Datenbanken sind Nutzerfreundlichkeit und Skalierbarkeit sowie Features wie Komprimierung, Data-Lifecycle-Management und Datenverdichtung.
Für IoT-Projekte und damit verbundene Anwendungen werden in der Regel täglich Millionen oder sogar Milliarden Datenpunkte verarbeitet. Einige davon erfordern eine umgehende Reaktion. Das gelingt nur, indem Unternehmen ein System zur Datenstromverarbeitung einsetzen. Denn Lösungen wie beispielsweise Apache Kafka leiten die Daten ab dem Zeitpunkt des Entstehens direkt in das Analysesystem. Im Gegensatz zu einer Batch-Verarbeitung, bei der Informationen über einen längeren Zeitraum gesammelt und dann gemeinsam analysiert werden, stehen die Einsichten aus den generierten Daten in Stream-basierten Architekturen in Echtzeit zur Verfügung. Dabei kann eine solche Architektur große Datenmengen nicht nur aus einer, sondern aus mehreren Quellen verarbeiten.
Das macht sie beispielsweise sehr effektiv für die Verwaltung von Clickstream-Analysen, also dem Sammeln von Besucherdaten auf Websites und deren Auswertung. In einem E-Commerce-Shop können anhand dieser Einsichten dann Angebote oder Produktempfehlungen für den Kunden im Handumdrehen personalisiert werden. Daher ist Echtzeit-Streaming ein unglaublich leistungsfähiges Werkzeug zur IoT-Datenverwaltung auf Unternehmensebene.
Io-Projekte: Data Tiering
Je nach Anwendungsfall, bieten sich für die Ablage von Daten verschiedene Speicherstufen wie Flash-Speicher, traditionelle SAN/NAS-Speicher-Arrays, Objektspeicher oder die Cloud an. Data Tiering sorgt dafür, dass die Daten zwischen den Speicherstufen verschoben werden können, ohne dass wichtige Informationen verloren gehen oder sich die Kosten erhöhen. So werden immer die richtigen Anforderungen in Bezug auf Speicherplatz, Geschwindigkeit und Kosten erfüllt.
IoT-Projekte sind dadurch bestimmt, dass häufig unstrukturierte Daten auftreten. Um hier ein ausgewogenes Data Tiering zu erreichen, eignen sich besonders Hybrid-Cloud-Strukturen. Denn sie kombinieren die Vorteile von traditionellem Cloud- und Edge-Computing: Sie bieten eine schnelle, aber sicherere Datenverarbeitung, die zudem näher an der Quelle und bei Bedarf auch in einem zentralen Repository stattfindet. Dies ermöglicht mehr Flexibilität beim Verschieben von Daten, beispielsweise in Public Clouds – die Kontrolle über die Daten bleibt jedoch beim Unternehmen. Zudem werden so Nachteile der alleinigen Nutzung der Public Cloud umgangen, wie hohe Bandbreitenkosten, Sicherheitsrisiken, Zugriffsmuster oder Performance-Probleme.
IoT-Projekte: mit Replikation Datenbank aufbauen
Wird das Skalieren einer Datenbank nötig, ermöglicht Replikation den Aufbau einer verteilten Datenbank. Indem Daten aus einer Datenbank auf einem Computer oder Server in eine Datenbank auf einem anderen Rechner kopiert werden, lässt sich von zwei oder mehr Standorten simultan auf die gleichen Daten zugreifen. Das Wichtige: Der Informationsstand ist für alle Benutzer der gleiche. Er kann zudem beliebig oft kopiert werden, um neue Analysemodelle aufzusetzen.
Stand: 16.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die WIN-Verlag GmbH & Co. KG, Chiemgaustraße 148, 81549 München einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://kontakt.vogel.de/de/win abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
Anwendungen zur Datenreplikation werden daher für Analysen von IoT-Daten immer wichtiger. Denn sie erlauben die Analyse großer Datenmengen in komplexen, verteilten Umgebungen. Nur durch diese Analyseergebnisse können aber Unternehmen Nutzungsmuster leichter erkennen oder Schwachstellen in angeschlossenen Geräten identifizieren — was letztlich zur Entwicklung verbesserter vernetzter Produkte beiträgt.
Erweiterte Replikationsstrategien umgehen sogar weite räumliche Distanzen. In einem Hub-and-Spoke-Modell beispielsweise können Daten von entfernten Standorten zu einem zentralen Hub repliziert werden. Auf diese Weise werden im zentralen Hub alle entfernten Standorte nachgebildet, jeder Standort muss sich aber nur um seine eigenen Daten kümmern und keine Gedanken über die Übertragung machen. Gerade mit der Weiterentwicklung von Edge- und Near-Edge-Computing gewinnt dieses Modell stark an Bedeutung. Auch in IoT-Umgebungen wird diese erweiterte Datenreplikation künftig eine wichtige Rolle spielen. Denn so lässt sich eine konsistente Kopie der Daten über alle Knoten hinweg bereitstellen, was die Datenverfügbarkeit erhöht und die Verfügbarkeit sicherstellt. (sg)
Über den Autor: Karsten Stöhr ist Solutions Engineer bei DataStax. Das Unternehmen bietet Lösungen für verteiltes Datenmanagement und Cloud-Services, mit der sich unter anderem Apps betreiben lassen.